Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Science ; 380(6649): 1059-1064, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: covidwho-20243994

RESUMO

COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.


Assuntos
Migração Animal , Animais Selvagens , COVID-19 , Mamíferos , Quarentena , Animais , Humanos , Animais Selvagens/fisiologia , Animais Selvagens/psicologia , COVID-19/epidemiologia , Mamíferos/fisiologia , Mamíferos/psicologia , Movimento
2.
Infect Dis Model ; 8(2): 514-538, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-2314063

RESUMO

The severe shortfall in testing supplies during the initial COVID-19 outbreak and ensuing struggle to manage the pandemic have affirmed the critical importance of optimal supply-constrained resource allocation strategies for controlling novel disease epidemics. To address the challenge of constrained resource optimization for managing diseases with complications like pre- and asymptomatic transmission, we develop an integro partial differential equation compartmental disease model which incorporates realistic latent, incubation, and infectious period distributions along with limited testing supplies for identifying and quarantining infected individuals. Our model overcomes the limitations of typical ordinary differential equation compartmental models by decoupling symptom status from model compartments to allow a more realistic representation of symptom onset and presymptomatic transmission. To analyze the influence of these realistic features on disease controllability, we find optimal strategies for reducing total infection sizes that allocate limited testing resources between 'clinical' testing, which targets symptomatic individuals, and 'non-clinical' testing, which targets non-symptomatic individuals. We apply our model not only to the original, delta, and omicron COVID-19 variants, but also to generically parameterized disease systems with varying mismatches between latent and incubation period distributions, which permit varying degrees of presymptomatic transmission or symptom onset before infectiousness. We find that factors that decrease controllability generally call for reduced levels of non-clinical testing in optimal strategies, while the relationship between incubation-latent mismatch, controllability, and optimal strategies is complicated. In particular, though greater degrees of presymptomatic transmission reduce disease controllability, they may increase or decrease the role of non-clinical testing in optimal strategies depending on other disease factors like transmissibility and latent period length. Importantly, our model allows a spectrum of diseases to be compared within a consistent framework such that lessons learned from COVID-19 can be transferred to resource constrained scenarios in future emerging epidemics and analyzed for optimality.

3.
Spat Spatiotemporal Epidemiol ; 44: 100560, 2023 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2150639

RESUMO

The global extent and temporally asynchronous pattern of COVID-19 spread have repeatedly highlighted the role of international borders in the fight against the pandemic. Additionally, the deluge of high resolution, spatially referenced epidemiological data generated by the pandemic provides new opportunities to study disease transmission at heretofore inaccessible scales. Existing studies of cross-border infection fluxes, for both COVID-19 and other diseases, have largely focused on characterizing overall border effects. Here, we couple fine-scale incidence data with localized regression models to quantify spatial variation in the inhibitory effect of an international border. We take as a case study the border region between the German state of Saxony and the neighboring regions in northwestern Czechia, where municipality-level COVID-19 incidence data are available on both sides of the border. Consistent with past studies, we find an overall inhibitory effect of the border, but with a clear asymmetry, where the inhibitory effect is stronger from Saxony to Czechia than vice versa. Furthermore, we identify marked spatial variation along the border in the degree to which disease spread was inhibited. In particular, the area around Löbau in Saxony appears to have been a hotspot for cross-border disease transmission. The ability to identify infection flux hotspots along international borders may help to tailor monitoring programs and response measures to more effectively limit disease spread.


Assuntos
COVID-19 , Animais , Humanos , COVID-19/epidemiologia , República Tcheca , Incidência , Pandemias
4.
PLoS One ; 16(8): e0254660, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1362084

RESUMO

The SARS-CoV-2 virus has spread around the world with over 100 million infections to date, and currently many countries are fighting the second wave of infections. With neither sufficient vaccination capacity nor effective medication, non-pharmaceutical interventions (NPIs) remain the measure of choice. However, NPIs place a great burden on society, the mental health of individuals, and economics. Therefore the cost/benefit ratio must be carefully balanced and a target-oriented small-scale implementation of these NPIs could help achieve this balance. To this end, we introduce a modified SEIRD-class compartment model and parametrize it locally for all 412 districts of Germany. The NPIs are modeled at district level by time varying contact rates. This high spatial resolution makes it possible to apply geostatistical methods to analyse the spatial patterns of the pandemic in Germany and to compare the results of different spatial resolutions. We find that the modified SEIRD model can successfully be fitted to the COVID-19 cases in German districts, states, and also nationwide. We propose the correlation length as a further measure, besides the weekly incidence rates, to describe the current situation of the epidemic.


Assuntos
COVID-19/epidemiologia , Controle de Doenças Transmissíveis/métodos , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Análise Custo-Benefício , Alemanha/epidemiologia , Humanos , Incidência , Modelos Estatísticos , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA